- isomorphic fields
- мат.изоморфные поля
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Tensor product of fields — In abstract algebra, the theory of fields lacks a direct product: the direct product of two fields, considered as a ring is never itself a field. On the other hand it is often required to join two fields K and L, either in cases where K and L are … Wikipedia
Trigonometry in Galois fields — In mathematics, the theory of quadratic extensions of finite fields supports analogies with trigonometry.The main motivation to deal with a finite field trigonometry is the power of the discrete transforms, which play an important role in… … Wikipedia
Classification of electromagnetic fields — In differential geometry and theoretical physics, the classification of electromagnetic fields is a pointwise classification of bivectors at each point of a Lorentzian manifold. It is used in the study of solutions of Maxwell s equations and has… … Wikipedia
Lie bracket of vector fields — See Lie algebra for more on the definition of the Lie bracket and Lie derivative for the derivationIn the mathematical field of differential topology, the Lie bracket of vector fields or Jacobi ndash;Lie bracket is a bilinear differential… … Wikipedia
Construction of splitting fields — In mathematics, a splitting field of a polynomial with coefficients in a field is an extension of that field over which the polynomial factors into linear factors. The purpose of this article is to describe an iterative process for constructing… … Wikipedia
Finite field — In abstract algebra, a finite field or Galois field (so named in honor of Évariste Galois) is a field that contains only finitely many elements. Finite fields are important in number theory, algebraic geometry, Galois theory, cryptography, and… … Wikipedia
Field arithmetic — In mathematics, field arithmetic is a subject that studies the interrelations between arithmetic properties of a ql|field (mathematics)|field and its absolute Galois group.It is an interdisciplinary subject as it uses tools from algebraic number… … Wikipedia
Dedekind zeta function — In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function which is obtained by specializing to the case where K is the rational numbers Q. In particular,… … Wikipedia
Collineation — In projective geometry, a collineation is a one to one and onto map (a bijection) from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. All projective linear … Wikipedia
Complex number — A complex number can be visually represented as a pair of numbers forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the square root of –1. A complex… … Wikipedia
Lie group — Lie groups … Wikipedia